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In multiplexed computational imaging schemes, high-resolution images are reconstructed by fusing the
information in multiple low-resolution images detected by a two-dimensional array of low-resolution im-
age sensors. The reconstruction procedure assumes a mathematical model for the imaging process that
could have generated the low-resolution observations from an unknown high-resolution image. In prac-
tical settings, the parameters of the mathematical imaging model are known only approximately and are
typically estimated before the reconstruction procedure takes place. Violations to the assumed model,
such as inaccurate knowledge of the field of view of the imagers, erroneous estimation of the model para-
meters, and/or accidental scene or environmental changes can be detrimental to the reconstruction qual-
ity, even if they are small in number. We present an adaptive algorithm for robust reconstruction of
high-resolution images in multiplexed computational imaging architectures. Using robust M-estimators
and incorporating a similarity measure, the proposed scheme adopts an adaptive estimation strategy
that effectively deals with violations to the assumed imaging model. Comparisons with nonadaptive re-
construction techniques demonstrate the superior performance of the proposed algorithm in terms of
reconstruction quality and robustness. © 2008 Optical Society of America

OCIS codes: 110.1758, 100.2980.

1. Introduction

The production of high-resolution (HR) images has
attracted much attention recently in diverse fields
ranging from consumer electronics and medical ima-
ging to surveillance and military applications. HR
images can be produced with high-precision optical
sensors that are, however, limited by their high cost,
bulky form factor, and noise level. Signal processing
offers inexpensive alternative solutions for the recon-
struction of such HR images from multiple low-reso-
lution (LR) images. These solutions have resulted in
two fields that have attracted much research activity
in the past few decades, that is,multiplexed computa-
tional imaging (MCI) [1–9]andmultiframesuperreso-
lution (SR) [10–34]. In multiframe SR, spatial

resolution enhancement is achieved by combining
the information in a sequence of subpixel-shifted
LR frames. The relative motion between the LR
frames is a result of the camera movement, object(s)
motion in the scene and/or both. On the other hand,
in MCI, HR images are produced by fusing the infor-
mation in multiple LR images captured by a two-di-
mensional array of LR image sensors with their
fields of view (FOVs) overlapping and having appro-
priately selected relative positions from each other.
MCI has benefited from the algorithms developed
in the literature for multiframe SR reconstruction
due to the similarities between the two problems [3].

MCI schemes with either fixed or flexible architec-
tures enable the design of cameras of a flat form factor
[3–8]. TOMBO [4] (thin observation module by bound
optics) is an example of a MCI scheme with fixed geo-
metry in which a conventional sensor array is divided
into pixel subarrays. With the object distance fixed, a
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specific resolution enhancement can be achieved.
This fixed geometry, however, dictates the optimiza-
tion of the design for a specific resolution and FOV,
which limits the design utility. Flexible and steerable
architectures, such as PANOPTES [5–7] (processing
arrays of Nyquist limited observations to produce a
thin electro-optic sensor), are highly desired to over-
come this fundamental limitation and to increase
the utility of the designed flat imaging sensor.
PANOPTES is an adaptive, multiresolution, and at-
tentive flat computational imaging sensor that inter-
rogates all the regions of interest in the scene and
adaptively directs its resources (subimagers) to these
regions of interest based on the information content
distribution of the scene [5–7]. In this architecture,
subimagers (SIs) are adaptively allocated to the scene
such that more SIs are steered to regions of interest
with high information content and fewer SIs are
steered to regions of less importance or lower informa-
tion content. This is achieved by an information-the-
ory driven feedback mechanism that controls
microelectromechanical mirror arrays in the sensor
pupil plane to vary the FOVs of the SIs [5–7].
We are particularly interested in HR image recon-
struction in steerable MCI architectures such as
PANOPTES, as the inherent steering capability of
the architecture will likely induce errors in the antici-
pated look direction, and hence a robust algorithm
that is tolerant to such errors is a necessity. It is worth
mentioning, however, that the proposed algorithm
can also be applied to fixed MCI architectures.
Algorithms devoted to HR image reconstruction in

MCI generally assume a mathematical model for the
imaging process that could have generated the LR
images detected by the array of image sensors from
an unknown HR image. The model parameters re-
present the image acquisition geometry, the behavior
of the optical elements, the integration and sampling
effects of the detector, and the relative physical posi-
tions and sizes of the detector pixels [8]. In practical
settings, these parameters are known only approxi-
mately and are typically estimated prior to the recon-
struction process. Inaccurate calibration or steering
of the imagers, erroneous estimation of the model
parameters, and/or accidental scene or environmen-
tal changes could be detrimental to the reconstruc-
tion process and could result in poor HR estimates.
In addition, in MCI schemes that employ high de-
grees of optical diversity [3,8], the number of the
model parameters increases and hence the asso-
ciated uncertainty in their estimates increases as
well. Therefore, reconstruction algorithms that are
robust to deviations in the parameters of the as-
sumed mathematical model are necessary.
Robust statistics [35–39] has emerged as a family of

theories and techniques for estimation while dealing
with deviations from idealizedmodel assumptions. In
particular, robust M-estimation has been found to be
effective in many computer vision applications such
as optical flow estimation [40], robust denoising
[41], and robust anisotropic diffusion [42]. Robust

M-estimation has been explored recently in multi-
frame SR. Capel [26] used Huber functions in the
prior termwithin the context ofmaximumaposteriori
(MAP) estimation. El-Yamany andPapamichalis [28–
31] developedanadaptiveM-estimation schemewith-
out regularization using the Lorentzian error norm in
the data fidelity term. Patanavijit and Jitapunkul
[27] also demonstrated the use of theLorentzian error
norm in both the data fidelity and the regularization
terms of the objective function. Pham et al. [32] intro-
duced a robust M-estimation scheme for multiframe
SR without regularization, where the Gaussian error
norm is used.Herewe describe an adaptive algorithm
for reconstruction of HR images in steerable MCI ar-
chitectures in a robust M-estimation framework.
Using robust M-estimators and incorporating a simi-
larity measure, the proposed algorithm adopts an
adaptive estimation strategy that effectively deals
with violations to the assumed imaging model.

In Section 2 we introduce the mathematical ima-
ging model. In Section 3 we develop the proposed
adaptive reconstruction algorithm, and its perfor-
mance is then evaluated through experimental re-
sults in Section 4. In Section 5 we conclude the
paper and discuss ongoing related work.

2. Observation Model

In a MCI scheme consisting of an array of SIs, we as-
sume the following linear observationmodel in which
the LR images detected by the SIs are assumed to
have been obtained from the unknown HR scenery
by geometric warping, blurring, and sampling pro-
cesses:

Yk ¼ DkHkFkXþ Nk; k ¼ 1; 2;…;L; ð1Þ
where L is the total number of SIs in the sensor ar-
ray; Yk and X are the LR images detected by the kth
SI, SIk, and the unknown HR image, respectively. It
is worth noting that in Eq. (1), images are repre-
sented by vectors that are obtained by lexicographic
ordering of two-dimensional images. ThematricesDk
and Hk represent the spatial subsampling at the de-
tector and the point-spread function (PSF), respec-
tively. Fk is the warping matrix that represents
the relative position between SIk and the unknown
HR image (X). The sampling factor represented by
Dk is assumed to be the same in both the x and
the y directions. Nk is the additive noise term asso-
ciated with SIk. Figure 1 illustrates the sequence
of operations of the assumed imaging model in
Eq. (1). Here we only consider dealing with an iden-
tical optical system, i.e., Dk ¼ D, Hk ¼ H ∀ k. In this
case, the model in Eq. (1) can be simplified to

Yk ¼ DHFkXþ Nk; k ¼ 1; 2;…;L: ð2Þ
In addition, the PSF is assumed to be space invari-
ant. It is worth mentioning that, in the proposed re-
construction algorithm, matrices D, H; and Fk are
not physically constructed. Instead, their functions
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are performed as simple image processing operations
such as downsampling, convolving with a blurring
kernel, and geometric warping, respectively [16–
18,21,22,27–32]. This approach significantly reduces
the computational load associated with the construc-
tion of these matrices, which are typically sparse and
of very high dimensionality. The relative position of
SIk is defined with respect to a reference subimager
SI1 and is represented by an affine transformation in
the following form [3]:

�
x0

y0

�
¼ sk

�
cos θk − sin θk
sin θk cos θk

��
x
y

�
þ
�
uk

vk

�
: ð3Þ

The parameters sk, θk, uk, and vk represent the mag-
nification (zooming) factor, the rotation angle, the
shift in the x direction, and the shift in the y direc-
tion, respectively, of SIk with respect to the reference
SI; uk and vk are measured in fractional pixel shifts
in the LR image grid. The set of affine transforma-
tion parameters collectively define the degrees of op-
tical diversity in a MCI architecture [3,8].

3. Adaptive Reconstruction Algorithm

A. Problem Formulation

Following the observation model in Eq. (2) and re-
casting the reconstruction problem within the gener-
alized M-estimation framework, the HR image
estimate is the solution of the following minimization
problem:

X� ¼ argmin
X

XL
k¼1

ρðDHFkX − YkÞ ¼ argmin
X

XL
k¼1

ρðEkÞ;

ð4Þ

where Ek is the vector of the projection errors corre-
sponding to the kth LR image, and ρ is an even-
symmetric function that has a unique minimum at
zero and satisfies the following condition:

∂

∂X

XL
k¼1

ρðEkÞ ¼ 0 ⇒
XL
k¼1

ðDHFkÞTψðEkÞ ¼ 0; ð5Þ

where ρðEÞ ¼P
jρðejÞ and ψðEÞ ¼ ½ψðe1Þ : : ψðejÞ:: �T.

ρðejÞ is a function applied to the element ej of E, and
ψðeÞ is the first derivative of ρ with respect to e and is
referred to as the influence function [35–37].

The mathematical model in Eq. (2) is only an ap-
proximation to the real imaging process. Deviations
from the idealized model assumptions and inaccu-
rate estimates of its parameters could be detrimental
to the reconstruction process and could result in poor
HR estimates. We leverage tools from robust M-
estimation [35–37] in an attempt to address the ro-
bustness of HR image reconstruction in MCI
schemes. The proposed approach was first intro-
duced within the context of multiframe SR in
Refs. [28–31]. Because of the strong similarity be-
tween MCI and multiframe SR, the proposed algo-
rithm can be applied in a straightforward manner
to multiplexed computational imaging schemes.

B. Objective Function

The robustness of HR image reconstruction has been
addressedrecently in the literaturewithin thecontext
of multiframe SR [19,21–34]. In the M-estimation
framework, thesolutionofEq. (4)hasbeen formulated
as a least-squares (LS) estimation problem using the
L2 error norm [18]. However, LS estimation exhibits
poor performance in the presence of deviations from
the model assumptions (outliers) [21,22,26–33]. The
nonrobustness of theL2 errornormlies in its influence
function (i.e., its first derivative), which is linear and
increases without bound assigning large weights to
largeerrorsthattypicallyoccurasaresultofviolations
to theassumed imagingmodel. Toachieve a robust SR
reconstruction,Farsiu etal. [21,22]proposedtheuseof
theL1 errornormasarobustalternativetotheL2 error
norm.However,theL1 influencefunctionisthesignum
function. Therefore, all errors (small or large) are
assigned the same weights þ1 or −1, depending only

Fig. 1. Sequence of operations of the imaging model in Eq. (1):
(a) original HR image, (b) geometric warping, (c) blurring, (d) sam-
pling, (e) noise addition. Middle column, reference SI; right col-
umn, SI with a relative rotation and offset with respect to the
reference SI.
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ontheirsign.TheL1 errornormismorerobustthanthe
L2 in the presence of outliers because of its bounded
influence. However, because of its constant-valued in-
fluence function that does not differentiate between
small and large errors, the resultingSRestimates suf-
fer from various reconstruction artifacts, especially in
the absence of a regularization term in the objective
function [28–31]. Figure 2. depicts plots of the L2
andL1 error norms and their corresponding influence
functions in the one-dimensional case.
In the proposed approach we introduce the use of

robust error norms in the objective function, in par-
ticular, the robust error norms that correspond to a
specific class of M-estimators known as redescending
M-estimators [35–37]. For these estimators, the in-
fluence function ψ increases up to a point, which is
referred to as the outlier threshold, after which it de-

creases (redescends) as the error grows. Because of
this behavior, large errors that fall beyond the outlier
threshold are assigned weights that decrease as the
error increases, thus providing a soft outlier rejection
rule. Of all the redescending M-estimators we are
particularly interested in estimators whose influence
functions are differentiable and have only one para-
meter, which will be determined from observations
shown later. Examples of these estimators are the
Lorentzian (Cauchy), Geman andMcClure, Gaussian
(Welsch), and Tukey’s biweight [35–42]. Here we only
demonstrate the Lorentzian estimator whose error
norm is defined as

ρðe; τÞ ¼ log½ðe2 þ τ2Þ=τ2�; ð6Þ

where e and τ are the error and the outlier threshold,

Fig. 2. (Color online) Plot of the error norms (left) and influence functions (right) for the L2, L1, and Lorentzian error norms. All the plots
are normalized to illustrate the relative weight assigned to the errors.
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respectively. The Lorentzian influence function
[which is proportional to the first derivative in
Eq. (6)] is given by

ψðe; τÞ ¼ 2τe=ðe2 þ τ2Þ: ð7Þ

The influence function in Eq. (7) is scaled to have a
maximuminfluenceofunityindependentoftheoutlier
thresholdvalue.Thisnormalizationisparticularlyim-
portant in the proposed adaptive formulation to en-
sure that all influence functions have the same
weight at their respective outlier thresholds, as will
beshownlater.Figure2depictsplotsof theLorentzian
error norm and its influence function for different
values of τ in the one-dimensional case. From these
plots it is shown how the influence function decreases
faster for smaller τ, assigning lower weights to the er-
rors that fall beyond the outlier threshold.
Recasting the HR reconstruction problem in an

adaptive M-estimation framework by use of redes-
cending M-estimators, the HR estimate is given by

X� ¼ argmin
X

XL
k¼1

ρðDHFkX − Yk; τkÞ

¼ argmin
X

XL
k¼1

ρðEk; τkÞ; ð8Þ

where ρðEk; τkÞ is the robust error norm associated
with the kth SI, and τk is the corresponding outlier
threshold. As shown in Eq. (8), instead of the typical
M-estimation approach to the problem of HR image
reconstruction in which the same error norm would
be used for all the SIs, we propose the use of a differ-
ent error norm (with a different outlier threshold) for
each LR image (SIs). This formulation effectively
deals with deviations from the assumed imaging
model that might occur in individual SIs, especially
in steerable MCI architectures, as a result of inaccu-
rate calibration or steering of the SIs, incorrect esti-
mation of their relative positions, and/or accidental
changes in the setup. The robustness of the proposed
scheme will be demonstrated in the set of experi-
ments presented later.

C. Update Equation

To determine the solution for Eq. (8), one might use
Newton’s algorithm. However, the influence function
of redescending M-estimators is bounded (as shown
in Fig. 2), and its derivative is not always positive
and goes to zero at infinity, which makes using New-
ton’s algorithm unreliable and convergence is not
guaranteed [37]. We chose to use the gradient des-
cent method, and the update equation that mini-
mizes Eq. (8) can be written as

Xnþ1 ¼ Xn − η
XL
k¼1

∇ρðEn
k ; τkÞ; n ¼ 0; 1; 2; :::; ð9Þ

where η is the step size. It can be shown that Eq. (9)
can be simplified to

Xnþ1 ¼ Xn − η
XL
k¼1

ðDHFkÞTψn
k ; n ¼ 0; 1; 2; :::;

ð10Þ

where ψn
k is a vector whose jth element is ψðenj;k; τkÞ,

the Lorentzian influence function evaluated at enj;k
(the jth element in En

k). The choice of the step size
parameter (η) plays an important role in the conver-
gence behavior of the gradient descent method. If the
step size is too large, divergence will occur; if the step
size is too small, the rate of convergence could be very
slow [43]. Choosing a constant step size is the sim-
plest approach. However, constant step size selection
is useful only in cases in which an appropriate step
size value is known or can be determined fairly easily
[43]. For twice differentiable robust error norms,
such as the Lorentzian, a proper constant step size
selection can be obtained by use of the method of si-
multaneous overrelaxation (SOR) [40,41,44]. The
SOR step size is defined as η ¼ ω=T, where ω is a con-
stant such that 0 < ω < 2 and T is an upper bound on
the second partial derivative of the ρðe; τÞ with re-
spect to e. The exact choice of ω affects only the rate
of convergence. In the proposed approach, ω is set to
1 and the step size is approximated by η ¼ 1=T ≈ τ=2
for the Lorentzian error norm. To achieve fast conver-
gence motivated by the SOR algorithm [40,41,44], we
used a different step size for each L term in Eq. (10),
i.e.,

Xnþ1 ¼ Xn −
XL
k¼1

ηkðDHFkÞTψn
k ; n ¼ 0; 1; 2; :::;

ð11Þ

where the step size parameter ηk is calculated for the
Lorentzian error norm as follows:

ηk ¼ τk=2 ð12Þ

Having set the adaptive step size as in Eq. (12), the
convergence is also checked after each iteration. If
the cost function does not improve, ηk can be reduced
by a small amount (e.g., 5%); otherwise it is kept at its
current value. In all the experiments we conducted,
however, setting the step size as in Eq. (12) has shown
fast convergence (typically from 7 to 12 iterations),
and there was no need to reduce the step size calcu-
lated in Eq. (12). In all the experiments presented
in this paper, the initial HR estimate was found
through bilinear interpolation of the LR image de-
tected by the reference subimager. We are currently
investigating computationally efficient optimization
techniques for minimization of the nonlinear objec-
tive function in Eq. (8).

1 April 2008 / Vol. 47, No. 10 / APPLIED OPTICS B121



D. Calculation of the Outlier Thresholds

The outlier threshold plays a vital role in dealing
with the outliers in the estimation process. Its calcu-
lation can be done by use of statistical methods [35–
37] or based on problem-dependent choices [37–42].
Within the proposed framework, we developed an
adaptive strategy to estimate τk from the LR obser-
vations, which is described in what follows.

1. Calculation of τ1

Since we are interested in increasing the resolution
of a LR reference image (Y1) using the information in
that image and the available LR images (Yk), the pro-
jection errors that correspond to the reference image
should all be considered in the estimation process,
i.e., they are all inliers. For 8 bit data, the maximum
absolute value for the projection errors is 255; hence
a reasonable choice for the outlier threshold for the
reference SI, τ1, is 255.

2. Calculation of τ k

To compute the outlier thresholds for the rest of the
SIs, a metric that measures the similarity between
the reference image and the kthmotion-compensated
LR image (~Yk) is first computed. This metric is de-
noted bydk ¼ dðY1; ~YkÞ, where k ¼ 2; 3;…;L. The out-
lier threshold for a given SI is then calculated as a
function of this metric such that, if dk → 0; τk → τ1;
and if dk → dmax (upper bound on d), τk → τmin (lower
bound on τ ). Under these constraints, we consider the
following exponential function as a reasonable choice
to calculate τk from dk :

τk ¼ τ1e−αdk ¼ 255e−αdk : ð13Þ
Parameter α in Eq. (13) controls the decay of the ex-
ponential function and, given the two constraints
above, is calculated as

α ¼ 1
dmax

log
�
255
τmin

�
: ð14Þ

The lower bound on the outlier threshold (τmin) is cho-
sen to be an arbitrarily small number. In our experi-
mentspresented in this paper, τmin wasset to10−8. For
the similaritymetric,weused thenormalized average
sum of absolute differences (SADs) between Y1 and
~Yk, which is defined by

dk ¼ 1
255 ×MN

XM
x¼1

XN
y¼1

jy1ðx; yÞ − ~ykðx; yÞj: ð15Þ

The normalized average SAD has an upper bound of
unity. Therefore, α is computed as α ¼ log
ð255 × 108Þ ≈ 24. The outlier threshold for the kth
SIs is then computed as

τk ¼ 255e−24dk ; k ¼ 2; 3;…;L; ð16Þ

where dk is the normalized average SAD between the
reference LR image (Y1) and the kth motion-compen-
sated LR image (~Yk). It is worth mentioning that the
average SAD is one possible measure to assess the si-
milarity between the reference LR image and each
motion-compensated LR image. We chose this mea-
sure because of its low computational complexity,
and it captures the mismatch between the two LR
images well.

4. Experimental Results

We now evaluate the performance of the proposed al-
gorithmthrough experimental simulations. Thenota-
tion 4× HR image reconstruction will be used to
denote an increase of the spatial resolution by a factor
of 4 in both the x and the y directions. The perfor-
mance of the proposed algorithm will be compared
only with the methods in Refs. [18,22,27]. In all the
experiments, themethod of iterative gradient descent
[43] is used, and the stopping criterion for all the algo-
rithms was set to ‖Xnþ1 − Xn‖2=‖Xn‖2 ≤ 10−4.

A. Synthetic Experiment: 4× HR Reconstruction

In this experimentweassume that a region of interest
(ROI) has been identified by theMCI system and that
SIs will be steered toward that ROI to increase their
spatial resolution. Furthermore, we assume that the
steerableMCIsystemoffersdiversityonlyinthetrans-
lational offsets between the SIs, i.e., SIs have transla-
tional offsets onlywith respect to a specified reference
SI. Figures 3(a) and 3(b) depict the original 600 × 800
HRsceneanda256 × 256ROI, respectively.Following
the observation model in Eq. (2), a sequence of 16 LR
images is generated from the HR ROI (this sequence
will bereferred toas test sequence#1)as follows.Aset
of 16 integer offsets (measured on the HR grid) to in-
crease the resolution by a factor of 4 (assuming uni-
form sampling) is generated and theHRROI is shift-
ed by these offset values. The shift pairs are fð0; 0Þ;
ð0; 1Þ;ð0; 2Þ; ð0; 3Þ;ð1; 0Þ; ð1; 1Þ;ð1; 2Þ; ð1; 3Þ;ð2; 0Þ;ð2; 1Þ;
ð2; 2Þ; ð2; 3Þ; ð3; 0Þ; ð3; 1Þ; ð3; 2Þ; ð3; 3Þg. Image #4 [off-
set of (0,3)] and image #10 [offset of (2,1)] are then ro-
tated 100 clockwise and zoomed in by a factor of 1.2,
respectively, to create a general affine position for
SIs #4 and #10. The resulting 16 warped images
are then convolvedwith a normalized 5 × 5Gaussian
kernel of zero mean and variance of 0.5, and down-
sampled by a factor of 4 in both the x and they direc-
tions. A zero-mean Gaussian noise is then added to
the resulting LR images such that each has a signal-
to-noise ratio (SNR) of 30 dB. The SNR of each
LR image in a synthetic experiment is defined
as SNRðYkÞ ¼ 10log10½varðDHFkXoriginalÞ=varðNkÞ� dB.
Figures 3(c)–3(e), depict the LR images detected by
SI #1 (the reference SI), SI #4, and SI #10, respec-
tively. Although the relative offsets are known in this
experiment, we used a spatial-domain motion esti-
mationalgorithm[45] toestimate theoffsetsbetween
each SI and the reference SI (a global translational
model is assumed). In this sense we have simulated
modeling and motion estimation errors, since rota-
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tionandzoomingcomponents forSI#4andSI#10will
bediscardedbythemotionestimationalgorithm,and
the offsets estimated for SI #4 and SI #10 will be in-
correct because the corresponding imagesdonot obey
the global translational model. The motion estima-
tion algorithm [45] produced shift values that are
close to the true values for all SIs except SI #4 and

SI #10 whose estimated shifts were ð28;−65Þ and
(67, 35), respectively. In addition to the above, a bias
of 4 pixels (on theHRgrid) is added to the relative off-
setestimatedbythemotionestimationalgorithm[45]
for SI #7 to simulate additionalmotion estimation er-
rors. To simulate blur estimation errors, the PSF is
assumed to be a normalized 5 × 5 Gaussian kernel
of zero mean and unity variance. Figure 4 depicts
plots of the average SAD (dk), the outlier thresholds
(τk), and the Lorentzian influence functions (ψk) for
the 16 LR images (SIs). From these plots it is shown
how the average SAD measure captured the mis-
match among the three outlier images and the refer-
ence LR image. It is also noted that the outlier
thresholds that correspond to SIs #4 and #10 are con-
siderably smaller because of their severe violation to
the assumed translational motion model. It is ob-
served how the influence functions that correspond
to SIs #4 and #10 decay rapidly, assigning almost
negligibleweight to the projection errors of the corre-
spondingLRimageandhenceeffectivelysuppressing
their effect in the estimation process. The HR esti-
mate that uses the L2 error norm [18,22] and Tikho-
nov regularization is shown in Fig. 5(d). From this
result it is shownthat theL2 estimatesuffers fromno-
ticeable artifacts that are due to the outliers (the sha-
dows corresponding to the outlier images appear in
the background). This result is not surprising, since
theL2 errornormisvulnerableto theoutliersbecause
of its linear influence function that assigns larger
weights to larger errors and hence amplifies their in-
fluence on the estimation. TheHRestimate that uses
theL1 errornorm [22] andTikhonov regularization is
showninFig.5(e).Fromthisresult it isshownhowuse
of theL1 error normhas suppressed the outliers com-
pared with use of the L2 error norm. However, as dis-
cussed earlier, because of its constant-valued
influence function (�1), it results in a blurryHR esti-
mate of relatively poor quality. TheHR estimate that
uses the Lorentzian error norm [27] and Tikhonov
regularization is shown in Fig. 5(f). It is shown how
the effect of the outliers has been suppressed. How-
ever, the solution is blurryandof relativelypoorqual-
ity because of the use of a relatively small outlier

Fig. 4. (Color online) Plots of (a) average SAD values (dk), (b) outlier thresholds (τk), (c) Lorentzian influence functions (ψk): dash–dot, dot,
and dashed curves correspond to SIs #4, #10, and #7, respectively, for test sequence #1.

Fig. 3. Test sequence #1: a, original HR scene (600 × 800); b, HR
region of interest (256 × 256); c, LR image detected by the refer-
ence subimager, SI #1; d, LR image detected by SI #4, which
has a relative offset and rotation with respect to SI #1; e, LR image
detected by SI #10, which has a relative offset and magnification
with respect to SI #1.
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threshold (todealeffectivelywiththeoutliers)and in-
corporating regularization. The HR reconstruction
resultusingtheproposedschemewithoutregulariza-
tion is shown in Fig. 5(g). From this result it is
observed how the proposed approach has success-
fully suppressed the effect of the outliers, resulting
in an artifacts-free HR estimate of crisp details. Fig-
ure 5(h) depicts the HR estimate using the proposed
schemewithTikhonov regularization. Theuse of reg-
ularization slightly smoothed the HR estimate be-
cause of the prior imposed smoothness. Figures 5(i)
and5(j) showtheHRestimateusingtheL2 errornorm
[18,22] and Tikhonov regularization and theL1 error
norm [22] and Tikhonov regularization, respectively,
if the images corresponding to SI #4, SI #7 and SI #10
were excluded (rejected) from the reconstruction pro-
cess.Weobservedthat theperformanceof theL1 error
norm is almost the same because of its constant-
valued influence function. The L2 error norm esti-
matedoesnotsuffer fromanyartifactsbecauseof out-

lier rejection.However,becauseof regularization, the
estimateisslightlyblurred.Comparisonofthetwore-
sults in Figs. 5(i) and 5(h) and the proposed results
(without regularization) in Fig. 5(h), it is clear that
the estimate using the proposed scheme is crisper
and does not suffer from any estimation artifacts be-
cause of the robust error norm used and the effective
strategy for dealing with the outliers.

B. Real Experiment: 4× HR Reconstruction

Steerable MCI schemes, such as PANOPTES, are
still in the implementation phase, and there are
no real data available that could be used for valida-
tion. However, to demonstrate the robustness of the
proposed scheme when applied to real data, we pre-
sent the reconstruction results from a LR sequence
taken by a single-aperture LR camera, where each
LR frame in the sequence will be treated as the out-
put from a LR SI in a steerable MCI system.
Although this sequence is not an accurate represen-
tation of actual sequences to be obtained later from
steerable MCIs, the promising results of the pro-
posed scheme imply that it would be successful when
applied to such systems. For this experiment we used
30 (64 × 96) frames from the Emily sequence (frames
40 through 69), which is available in the data set
http://www.soe.ucsc.edu/~milanfar/DataSets. The 30
frames approximately follow the translational
motion model with the last five frames including
head movement and a more complicated motion.
This sequence will be referred to as test sequence
#2. For this sequence, a translational motion model
is assumed, and the algorithm in Ref. [45] is used
to estimate the motion vectors. The unknown
camera PSF is assumed to be a normalized 5 × 5
Gaussian kernel of zero mean and unity variance.
Figures 6(a) and 6(b) show LR frame #1 and LR
frame #27 (including Emily’s head movement), re-
spectively.

The HR estimate using the L2 error norm [18,22]
and Tikhonov regularization is shown in Fig. 6(c).
From this result it is shown that the L2 estimate suf-
fers from visible artifacts that are due to Emily’s head
movement. The HR estimate using the L1 error norm
[22] andTikhonov regularization is shown inFig. 6(d).
From this result it is shown how use of the L1 error
norm has suppressed the outliers compared with
use of the L2 error norm. However, it again results
in a blurry HR estimate. The HR estimate obtained
with the Lorentzian error norm [27] and Tikhonov
regularization is shown in Fig. 6(e), which shows
how the effect of the outliers has not been totally sup-
pressed and the solution is blurry and of relatively
poor quality. This result is a consequence of (1) using
a fixed outlier threshold for all LR frames that do not
enable proper outlier suppression or rejection and (2)
incorporating regularization. The HR reconstruction
results using the proposed scheme without and with
regularization are shown inFigs. 6(f) and 6(g), respec-
tively. Again, it is observed how the proposed ap-
proach has successfully suppressed the effect of the

Fig. 5. 4× HR image reconstruction results for test sequence #1:
a, original HRROI; b, LR image detected by the reference SI, SI #1;
c, initial estimate (bilinear interpolation of b); d, L2 estimate + Ti-
khonov regularization; e, L1 estimate + Tikhonov regularization;
f, Lorentzian estimate [27] + Tikhonov regularization; g, proposed
algorithmwithout regularization; h, proposed algorithm + regular-
ization;, i, L2 estimate + Tikhonov regularization, excluding SIs
#4, #7, and #10 from the reconstruction process; j, L1 estimate
+ Tikhonov regularization, excluding SIs #4, #7, and #10 from
the reconstruction process.
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outliers, resulting in an artifacts-free HR estimate of
crisp details, even without the use of regularization.
The results using regularization are slightly smooth-
er because of the prior smoothness imposed on the so-
lution. Plots of the average SAD (dk), the outlier
thresholds (τk), and the Lorentzian influence func-
tions (ψk) are also depicted in Fig. 6. From these plots
it can be seen how the average SADmeasure was able
to capture the mismatch between the reference (first)
LR frame and the outlier frames in which Emily
moves her head and the motion violates the transla-
tional model. It is also noted that the outlier thresh-
olds that correspond to frames 26 through 30 are
considerably small because of their violation of the as-
sumed single translational motion model. The influ-

ence functions that correspond to frames 26 through
30 decay rapidly, assigning almost negligible weight
to the projection errors of these frames andhence sup-
pressing their effect.

5. Conclusions

We have presented an adaptive M-estimation frame-
work for robust high-resolution image reconstruc-
tion in steerable multiplexed computational
imaging systems. Use of a robust error norm and
adapting the estimation process to each low-resolu-
tion image detected by each low-resolution subima-
ger in the sensor array, the proposed method
effectively suppresses the outliers that are due to
model violations and results in HR estimates with

Fig. 6. (Color online) 4× HR image reconstruction results for test sequence #2: (a) LR frame #1, (b) LR frame #27, (c) L2 estimate +
Tikhonov regularization, (d) L1 estimate + Tikhonov regularization, (e) Lorentzian estimate [27] + Tikhonov regularization, (f) proposed
algorithm without regularization, (g) proposed algorithm + Tikhonov regularization, (h) plot of average SAD values (dk), (i) plot of the
outlier thresholds (τk), (j) plot of the Lorentzian influence functions (ψk): dotted curves correspond to frames 26 through 30, which include
head movement.
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crisp details and no estimation artifacts, without the
use of a regularization term in the objective func-
tion. Experimental results have demonstrated the
superior performance of the proposed algorithm over
methods based on the L2, L1, or Lorentzian
error norms.

This research was funded in part through a
collaborative technology agreement with the U.S.
Army Research Laboratory under award W911NF-
06-2-0035.
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